Simulation of the Vertical Ground Reaction Force on Sport Surfaces during Landing

Author:

Peikenkamp Klaus1,Fritz Martin2,Nicol Klaus1

Affiliation:

1. 1Westfälische Wilhelms–University of Münster

2. 2University of Dortmund

Abstract

The surface-athlete interaction is discussed as one possible factor in overuse injuries, as the ground reaction force does not depend only on the athlete’s movement during surface contact but also on the mechanical properties of the playing surface. Since it is extremely difficult to measure the ground reaction force on an area-elastic surface, two damped linear-spring models were combined to calculate both the vertical ground reaction force on area-elastic surfaces and their deformations during the athlete’s landing from a jump height of 0.45 m. The athlete model consists of 4 segments (feet, shanks, thighs, and rest of the body) and the surface model consists of 5 segments each connected (a) to the concrete and (b) to each other via an additional imaginary segment. While the connections to the concrete were kept constant, the surface mass and the connections between the segments were varied in order to consider different degrees of area-elasticity of the simulated surfaces. With this approach it was shown that both the passive and active maximum of the vertical ground reaction force depend only on the maximum deformation of the surface, whereas the force rates vary greatly for identical maximum deformations. It appears that these differences increase with increasing maximum deformation. Therefore, in constructing area-elastic sport surfaces, the maximum deformation allowed should be as large as would coincide with other functions the surface must fulfill. Subsequently, the surface mass interacting with the athlete during landing should be large and the damping properties between these mass-segments should be very small.

Publisher

Human Kinetics

Subject

Rehabilitation,Orthopedics and Sports Medicine,Biophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3