Effects of the Functional Heel Drop Exercise on the Muscle Architecture of the Gastrocnemius

Author:

Alonso-Fernandez Diego,Taboada-Iglesias Yaiza,García-Remeseiro Tania,Gutiérrez-Sánchez Águeda

Abstract

Context: The architectural characteristics of a muscle determine its function. Objective: To determine the architectural adaptations of the lateral gastrocnemius (LG) and medial gastrocnemius (MG) muscles after a functional eccentric strength training protocol consisting of heel drop exercises, followed by a subsequent detraining period. Design: Pretest and posttest. Setting: Training rooms and laboratory. Participants: The participants (N = 45) who were randomly divided into an experimental group (EG, n = 25) and a control group (CG, n = 20). Interventions: The 13-week intervention included participants (N = 45) who were randomly divided into an EG (n = 25) and a CG (n = 20). The EG performed a week of control and training, 8 weeks of eccentric training, and 4 weeks of detraining. The CG did not perform any type of muscular training. The architectural characteristics of the LG and MG muscles were evaluated at rest in both groups using 2-D ultrasound before (pretest–week 1) and after (posttest–week 9) the training, and at the end of the detraining period (retest–week 13). Main Outcome Measures: One-way repeated measures analysis of variance was used to determine training-induced changes in each of the variables of the muscle architecture. Results: After the training period, the members of the EG experienced a significant increase in the fascicle length of LG (t = −9.85, d = 2.78, P < .001) and MG (t = −8.98, d = 2.54, P < .001), muscle thickness (t = −6.71, d = 2.86, P < .001) and (t = −7.85, d = 2.22, P < .001), and the pennation angle (t = −10.21, d = 1.88, P < .05) and (t = −1.87, d = 0.53, P < .05), respectively. After the detraining period, fascicle length, muscle thickness, and pennation angle showed a significant decrease. In the CG, no significant changes were observed in any of the variables. Conclusions: The heel drop exercise seems to generate adaptations in the architectural conditions of LG and MG, which are also reversible after a detraining period. These results may have practical implications for injury prevention and rehabilitation programs.

Publisher

Human Kinetics

Subject

Rehabilitation,Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3