Ultrasonographic and Myotonometric Evaluation of the Shoulder Girdle After an Isokinetic Muscle Fatigue Protocol

Author:

Klich Sebastian,Pietraszewski Bogdan,Zago Matteo,Galli Manuela,Lovecchio Nicola,Kawczyński Adam

Abstract

Objectives: The aim of the study was to investigate supraspinatus tendon thickness, acromiohumeral distance (AHD), and stiffness/creep measures of the shoulder girdle in overhead asymptomatic athletes in muscle fatigue conditions. Design: Observational, case series study. Setting: Biomechanics and motion analysis lab. Participants: Twenty-four male overhead volleyball (n = 8), handball (n = 8), and tennis (n = 8) athletes. All subjects were without shoulder injury history. Main Outcome Measure: The subjects were tested for supraspinatus tendon thickness (in short and long axis), AHD using ultrasound scans and stiffness/creep of upper trapezius, infraspinatus, anterior and posterior deltoid, and pectoralis major using the myotonometer device before and immediately after a fatigue protocol. Intervention: The fatigue protocol consisted of 3 sets of 32 maximum isokinetic concentric contractions performing shoulder internal and external rotation at isokinetic speed of 120°/s. Results: A significant increase in supraspinatus tendon thickness (both in short and long axis) (P = .045 and P = .01, respectively) and a reduction in AHD (P = .01) were found after an isokinetic protocol. The stiffness increased significantly in upper trapezius (P ≤ .01), infraspinatus (P = .003), posterior deltoid (P = .047), and pectoralis major (P = .01), whereas the creep showed a significant decrement for upper trapezius (P = .001) and infraspinatus (P = .003). Conclusion: The present study has demonstrated the postexercise fatigue in overhead athletes. The increase of stiffness (reduction of muscle creep) and tendon thickness (simultaneous to the reduction of AHD) may indicate rotator cuff overloading as a primary intrinsic tendon pathology process.

Publisher

Human Kinetics

Subject

Rehabilitation,Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3