Effects of Visually Augmented Gait Training on Foot-Ground Clearance: An Intervention to Reduce Tripping-Related Falls

Author:

Straaten Rob van der1,Tirosh Oren2,Sparrow William A. (Tony)3,Begg Rezaul3

Affiliation:

1. 1Hasselt University

2. 2Swinburne University

3. 3Victoria University

Abstract

Minimum toe clearance (MTC ∼10–30 mm) is a hazardous mid-swing gait event, characterized by high-foot velocity (∼4.60 m·s−1) and single-foot support. This experiment tested treadmill-based gait training effects on MTC. Participants were 10 young (4 males and 6 females) and 10 older (6 males and 4 females) healthy ambulant individuals. The mean age, stature, and body mass for the younger group was 23 (2) years, 1.72 (0.10) m, and 67.5 (8.3) kg, and for older adults was 77 (9) years, 1.64 (0.10) m, and 71.1 (12.2) kg. Ten minutes of preferred speed treadmill walking (baseline) was followed by 20 minutes with MTC information (feedback) and 10 minutes without feedback (retention). There were no aging effects on MTC in baseline or feedback. The MTC in baseline for older adults was 14.2 (3.5) mm and feedback 27.5 (8.7) mm, and for the younger group, baseline was 12.7 (2.6) mm and feedback 28.8 (5.1) mm, respectively. Retention MTC was significantly higher for both groups, indicating a positive effect of augmented information: younger 40.8 (7.3) mm and older 27.7 (13.6) mm. Retention joint angles relative to baseline indicated that the young modulated joint angles control MTC differently using increased ankle dorsiflexion at toe off and modulating knee and hip angles later in swing closer to MTC.

Publisher

Human Kinetics

Subject

Rehabilitation,Orthopedics and Sports Medicine,Biophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predicting improvement in biofeedback gait training using short-term spectral features from minimum foot clearance data;Frontiers in Bioengineering and Biotechnology;2024-08-28

2. A Soft Robotic Intervention for Gait Enhancement in Older Adults;IEEE Transactions on Neural Systems and Rehabilitation Engineering;2021

3. What can we learn about reshoring after Covid-19?;Operations Management Research;2020-08-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3