Test–Retest Reliability and Visual Perturbation Performance Costs During 2 Reactive Agility Tasks

Author:

Smith Ellen M.1,Sherman David A.23ORCID,Duncan Samantha1,Murray Andy1,Chaput Meredith4,Murray Amanda1,Bazett-Jones David M.1ORCID,Norte Grant E.4ORCID

Affiliation:

1. College of Health and Human Services, The University of Toledo, Toledo, OH, USA

2. Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA

3. Live4 Physical Therapy and Wellness, Acton, MA, USA

4. Cognition, Neuroplasticity, & Sarcopenia (CNS) Lab, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL, USA

Abstract

Context: High secondary injury rates after orthopedic surgeries have motivated concern toward the construct validity of return-to-sport test batteries, as it is evident that common strength and functional assessments fail to elicit pertinent behaviors like visual search and reactive decision making. This study aimed to establish the test–retest reliability of 2 reactive agility tasks and evaluate the impact of visual perturbation on physical performance. Methods: Fourteen physically active individuals completed 2 agility tasks with reaction time (ie, 4 corner agility), working memory, and pathfinding (ie, color recall) components. Participants completed both tasks 4 times in 2 sessions scheduled 7 days apart. Outcomes included performance metrics of reaction time, time to target, number of targets, and total time assessed with reactive training timing gates. To assess test–retest reliability, we used intraclass correlation coefficients (ICCs), standard error of measurement (SEM), and minimal detectable change (MDC). Stroboscopic goggles induced visual perturbation during the fourth trial of each task. To assess the effect of visual perturbation, we used paired t tests and calculated performance costs. Results: The 4-corner agility task demonstrated excellent reliability with respect to reaction time (ICC3,1 = .907, SEM = 0.13, MDC = 0.35 s); time to light (ICC3,1 = .935, SEM = 0.07, MDC = 0.18 s); and number of lights (ICC3,1 = .800, SEM = 0.24, MDC = 0.66 lights). The color recall task demonstrated good-to-excellent test–retest reliability for time to lights (ICC3,1 = .818–.953, SEM = 0.07–0.27, MDC = 0.19–0.74 s); test time (ICC3,1 = .969, SEM = 5.43, MDC = 15.04 s); and errors (ICC3,1 = .882, SEM = 0.19, MDC = 0.53 errors). Visual perturbation resulted in increased time to target (P = .022–.011), number of targets (P = .039), and total test time (P = .013) representing moderate magnitude degradation of performance (d = 0.55–0.87, performance costs = 5%–12%). Conclusions: Both tasks demonstrated acceptable test–retest reliability. Performance degraded on both tasks with the presence of visual perturbation. These results suggest standardized reactive agility tasks are reliable and could be developed as components of dynamic RTS testing.

Publisher

Human Kinetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3