Muscle Activity During Running With Different Body-Weight-Support Mechanisms: Aquatic Environment Versus Body-Weight-Support Treadmill

Author:

Mercer John A.,Applequist Bryon C.,Masumoto Kenji

Abstract

Background:Body-weight (BW) support during running can be accomplished using deep-water running (DWR; 100% BW support) and a lower-body positive-pressure (LBPP) treadmill.Purpose:To compare lower-extremity muscle activity during DWR and running on an LBPP treadmill at matched stride frequency.Methods:Eight subjects (40 ± 6.5 y, 173 ± 7.2 cm, 66.9 ± 11.7 kg) completed 4 running conditions all at a preferred stride frequency that was determined while running with no support. Two conditions were running on the LBPP treadmill at 60% and 80% of BW, and the other 2 conditions were different DWR styles: high knee (DWR-HK) and cross-country (DWR-CC). Average (AVG) and root-mean-square (RMS) electromyography (rectus femoris, biceps femoris, gastrocnemius, and tibialis anterior) were each compared among conditions (repeated-measures analysis of variance).Results:Results for AVG and RMS variables were identical for statistical tests for each muscle. Rectus femoris electromyography during DWR-HK was lower than that of DWR-CC (P < .05) but not different than either 60% BW or 80% BW (P > .05). Biceps femoris electromyography was less during DWR-HK than DWR-CC (P < .05) but greater during DWR-HK than either BW 60% or BW 80% (P < .05). Neither gastrocnemius nor tibialis anterior electromyography differed between conditions (P > .05).Conclusion:Neither the mechanism of BW support nor style of DWR influenced gastrocnemius or tibialis anterior muscle activity during running at the same stride frequency. However, rectus femoris and biceps femoris muscle activity were influenced by not only the mechanism of BW support but also the style of DWR.

Publisher

Human Kinetics

Subject

Rehabilitation,Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine,Biophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3