9.58 and 10.49: Nearing the Citius End for 100 m?

Author:

Haugen Thomas,Tønnessen Espen,Seiler Stephen

Abstract

Human upper performance limits in the 100-m sprint remain the subject of much debate. The aim of this commentary is to highlight the vulnerabilities of prognoses from historical trends by shedding light on the mechanical and physiological limitations associated with human sprint performance. Several conditions work against the athlete with increasing sprint velocity; air resistance and braking impulse in each stride increase while ground-contact time typically decreases with increasing running velocity. Moreover, muscle-force production declines with increasing speed of contraction. Individual stature (leg length) strongly limits stride length such that conditioning of senior sprinters with optimized technique mainly must be targeted to enhance stride frequency. More muscle mass means more power and thereby greater ground-reaction forces in sprinting. However, as the athlete gets heavier, the energy cost of accelerating that mass also increases. This probably explains why body-mass index among world-class sprinters shows low variability and averages 23.7 ± 1.5 and 20.4 ± 1.4 for male and female sprinters, respectively. Performance development of world-class athletes indicates that ~8% improvement from the age of 18 represents the current maximum trainability of sprint performance. However, drug abuse is a huge confounding factor associated with such analyses, and available evidence suggests that we are already very close to “the citius end” of 100-m sprint performance.

Publisher

Human Kinetics

Subject

Orthopedics and Sports Medicine,Physical Therapy, Sports Therapy and Rehabilitation

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3