Effects of the Etna Uphill Ultramarathon on Energy Cost and Mechanics of Running

Author:

Lazzer Stefano,Salvadego Desy,Taboga Paolo,Rejc Enrico,Giovanelli Nicola,di Prampero Pietro E.

Abstract

Purpose:To investigate the effects of an extreme uphill marathon on the mechanical parameters that are likely to affect the energy cost of running (Cr).Methods:Eleven runners (27–59 y) participated in the Etna SuperMarathon (43 km, 0–3063 m above sea level). Anthropometric characteristics, maximal explosive power of the lower limb (Pmax), and maximal oxygen uptake were determined before the competition. In addition, before and immediately after the race, Cr, contact (tc) and aerial (ta) times, step frequency (f), and running velocity were measured at constant self-selected speed. Then, peak vertical ground-reaction force (Fmax), vertical downward displacement of the center of mass (Δz), leg-length change (ΔL), and vertical (kvert) and leg (kleg) stiffness were calculated.Results:A direct relationship between Cr, measured before the race, and race time was shown (r = .61, P < .001). Cr increased significantly at the end of the race by 8.7%. Immediately after the race, the subjects showed significantly lower ta (–58.6%), f (–11.3%), Fmax (–17.6%), kvert (–45.6%), and kleg (–42.3%) and higher tc (+28.6%), Δz (+52.9%), and ΔL (+44.5%) than before the race. The increase of Cr was associated with a decrement in Fmax (r = –.45), kvert (r = –.44), and kleg (r = –.51). Finally, an inverse relationship between Pmax measured before the race and ΔCr during race was found (r = –.52).Conclusions:Lower Cr was related with better performance, and athletes characterized by the greater Pmax showed lower increases in Cr during the race. This suggests that specific power training of the lower limbs may lead to better performance in ultraendurance running competition.

Publisher

Human Kinetics

Subject

Orthopedics and Sports Medicine,Physical Therapy, Sports Therapy and Rehabilitation

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3