The Physiological Characteristics of an 83-Year-Old Champion Female Master Runner

Author:

Cattagni Thomas,Gremeaux Vincent,Lepers Romuald

Abstract

Purpose: To examine the cardiorespiratory, muscular, and skeletal characteristics of an 83-year-old champion female master athlete (called DL in this study) who had set multiple world running records in the 80-to-84-year-old age group. Methods: Measures of maximal oxygen uptake, maximal heart rate, maximal isometric torque for knee extensor muscles, thigh and triceps surae muscle volumes, and bone mineral density (BMD) of the proximal femur region were evaluated. Based on previously published equations, physiological age was determined for maximal oxygen uptake, maximal heart rate, and maximal isometric torque. Muscle volumes for the dominant leg were compared with previously published sex- and age-matched data using z scores. For BMD, T score and z score were calculated. Results: DL had the highest maximal oxygen uptake (42.3 mL·min−1·kg−1) ever observed for a female older than 80 years of age, which gave her a remarkable physiological age (27 y). By contrast, she had a physiological age closer to her biological age for maximal isometric torque (90 y) and maximal heart rate (74 y). The z scores for thigh (0.4) and triceps surae (1.1) muscle volumes revealed that DL’s leg muscles were affected almost as much as her sex- and age-matched peers. The T score (−1.7) for BMD showed that DL had osteopenia but no osteoporosis, and the z score (0.7) showed that DL’s BMD was similar to that of females of the same age. Conclusion: This single case study shows that the remarkable cardiorespiratory fitness coupled with intensive endurance training observed in a female master athlete was not associated with specific preservation of her muscular and skeletal characteristics.

Publisher

Human Kinetics

Subject

Orthopedics and Sports Medicine,Physical Therapy, Sports Therapy and Rehabilitation

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3