Maximal Lactate Steady State’s Dependence on Cycling Cadence

Author:

Beneke Ralph,Leithäuser Renate M.

Abstract

The maximal lactate steady state (MLSS) depicts the highest blood lactate concentration (BLC) that can be maintained over time without a continual accumulation at constant prolonged workload. In cycling, no difference in the MLSS was combined with lower power output related to peak workload (IMLSS) at 100 than at 50 rpm. MLSS coincides with a respiratory exchange ratio (RER) close to 1. Recently, at incremental exercise, an RER of 1 was found at similar workload and similar intensity but higher BLC at 100 than at 50 rpm. Therefore, the authors reassessed a potential effect of cycling cadences on the MLSS and tested the hypothesis that the MLSS would be higher at 105 than at 60 rpm with no difference in IMLSS in a between-subjects design (n = 16, age 25.1 ± 1.9 y, height 178.4 ± 6.5 cm, body mass 70.3 ± 6.5 kg vs n = 16, 23.6 ± 3.0 y, 181.4 ± 5.6 cm, 72.5 ± 6.2 kg; study I) and confirmed these findings in a within-subject design (n = 12, 25.3 ± 2.1 y, 175.9 ± 7.7 cm, 67.8 ± 8.9 kg; study II). In study I, the MLSS was lower at 60 than at 105 rpm (4.3 ± 0.7 vs 5.4 ± 1.0 mmol/L; P = .003) with no difference in IMLSS (68.7% ± 5.3% vs 71.8% ± 5.9%). Study II confirmed these findings on MLSS (3.4 ± 0.8 vs 4.5 ± 1.0 mmol/L; P = .001) and IMLSS (65.0% ± 6.8% vs 63.5% ± 6.3%; P = .421). The higher MLSS at 105 than at 60 rpm combined with an invariance of IMLSS and RER close to 1 at MLSS supports the hypothesis that higher cadences can induce a preservation of carbohydrates at given BLC levels during low-intensity, high-volume training sessions.

Publisher

Human Kinetics

Subject

Orthopedics and Sports Medicine,Physical Therapy, Sports Therapy and Rehabilitation

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3