A Comparison of Critical Speed and Critical Power in Runners Using Stryd Running Power

Author:

van Rassel Cody R.1ORCID,Sales Kate M.1ORCID,Ajayi Oluwatimilehin O.1ORCID,Nagai Koki1,MacInnis Martin J.1ORCID

Affiliation:

1. Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada

Abstract

Purpose: Although running traditionally relies on critical speed (CS) as an indicator of critical intensity, portable inertial measurement units offer a potential solution for estimating running mechanical power to assess critical power (CP) in runners. The purpose of this study was to determine whether CS and CP differ when assessed using the Stryd device, a portable inertial measurement unit, and if 2 running bouts are sufficient to determine CS and CP. Methods: On an outdoor running track, 10 trained runners (, 59.0 [4.2] mL·kg−1·min−1) performed 3 running time trials (TT) between 1200 and 4400 m on separate days. CS and CP were derived from 2-parameter hyperbolic speed–time and power–time models, respectively, using 2 (CS2TT and CP2TT) and 3 (CS3TT and CP3TT) TTs. Subsequently, runners performed constant-intensity running for 800 m at their calculated CS3TT and CP3TT. Results: Running at the calculated CS3TT speed (3.88 [0.44] m·s−1) elicited an average Stryd running power (271 [28] W) not different from the calculated CP3TT (270 [28]; P = .940; d = 0.02), with excellent agreement between the 2 values (intraclass correlation coefficient = .980). The CS2TT (3.97 [0.42] m·s−1) was not higher than CS3TT (3.89 [0.44] m·s−1; P = .178; d = 0.46); however, CP2TT (278 [29] W) was greater than CP3TT (P = .041; d = 0.75). Conclusion: The running intensities at CS and CP were similar, supporting the use of running power (Stryd) as a metric of aerobic fitness and exercise prescription, and 2 trials provided a reasonable, albeit higher, estimate of CS and CP.

Publisher

Human Kinetics

Subject

Orthopedics and Sports Medicine,Physical Therapy, Sports Therapy and Rehabilitation

Reference12 articles.

1. Critical power: an important fatigue threshold in exercise physiology;Poole DC,2016

2. A model for the calculation of mechanical power during distance running;Williams KR,1983

3. The “critical power” concept: applications to sports performance with a focus on intermittent high-intensity exercise;Jones AM,2017

4. Mechanical power in endurance running: a scoping review on sensors for power output estimation during running;Jaén-Carrillo D,2020

5. Prediction of power output at different running velocities through the two-point method with the stryd™ power meter;García-Pinillos F,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3