The Relationship Between Cardiorespiratory and Accelerometer-Derived Measures in Trail Running and the Influence of Sensor Location

Author:

Staunton Craig A.,Swarén Mikael,Stöggl Thomas,Born Dennis-Peter,Björklund Glenn

Abstract

Purpose: To examine the relationship between cardiorespiratory and accelerometer-derived measures of exercise during trail running and determine the influence of accelerometer location. Methods: Eight trail runners (7 males and 1 female; age 26 [5] y; maximal oxygen consumption [] 70 [6] mL·kg−1·min−1) completed a 7-km trail run (elevation gain: 486 m), with concurrent measurements of , heart rate, and accelerations recorded from 3 triaxial accelerometers attached at the upper spine, lower spine, and pelvis. External exercise intensity was quantified from the accelerometers using PlayerLoad™ per minute and accelerometry-derived average net force. External exercise volume was calculated using accumulated PlayerLoad and the product of average net force and duration (impulse). Internal intensity was calculated using heart rate and -metrics; internal volume was calculated from total energy expenditure (work). All metrics were analyzed during both uphill (UH) and downhill (DH) sections of the trail run. Results: PlayerLoad and average net force were greater during DH compared with UH for all sensor locations (P ≤ .004). For all accelerometer metrics, there was a sensor position × gradient interaction (F2,1429.003; P <.001). The upper spine was lower compared with both pelvis (P ≤ .003) and lower spine (P ≤ .002) for all accelerometer metrics during both UH and DH running. Relationships between accelerometer and cardiorespiratory measures during UH running ranged from moderate negative to moderate positive (r = −.31 to .41). Relationships were stronger during DH running where there was a nearly perfect correlation between work and impulse (r = .91; P < .001). Conclusions: Simultaneous monitoring of cardiorespiratory and accelerometer-derived measures during trail running is suggested because of the disparity between internal and external intensities during changes in gradient. Sensor positioning close to the center of mass is recommended.

Publisher

Human Kinetics

Subject

Orthopedics and Sports Medicine,Physical Therapy, Sports Therapy and Rehabilitation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3