Adding Vibration During Varied-Intensity Work Intervals Increases Time Spent Near Maximal Oxygen Uptake in Well-Trained Cyclists

Author:

Duc Sébastien1,Urianstad Tomas2,Rønnestad Bent R.2

Affiliation:

1. Laboratory of Performance, Health, Metrology and Society, Faculty of Sciences and Techniques of Physical and Sport Activities, University of Reims Champagne-Ardenne, Reims, France

2. Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, Lillehammer, Norway

Abstract

Purpose: Previous research suggests that the percentage of maximal oxygen uptake attained and the time it is sustained close to maximal oxygen uptake (eg, >90%) can serve as a good criterion to judge the effectiveness of a training stimulus. The aim of this study was to investigate the acute effects of adding vibration during varied high-intensity interval training (HIIT) sessions on physiological and neuromuscular responses. Methods: Twelve well-trained cyclists completed a counterbalanced crossover protocol, wherein 2 identical varied HIIT cycling sessions were performed with and without intermittent vibration to the lower-intensity workloads of the work intervals (6 × 5-min work intervals and 2.5-min active recovery). Each 5-minute work interval consisted of 3 blocks of 40 seconds performed at 100% of maximal aerobic power interspersed with 60-second workload performed at a lower power output, equal to the lactate threshold plus 20% of the difference between lactate threshold and maximal aerobic power. Oxygen uptake and electromyographic activity of lower and upper limbs were recorded during all 5-minute work intervals. Results: Adding vibration induced a longer time ≥90% maximal oxygen uptake (11.14 [7.63] vs 8.82 [6.90] min, d = 0.64, P = .048) and an increase in electromyographic activity of lower and upper limbs during the lower-intensity workloads by 20% (16%) and 34% (43%) (d = 1.09 and 0.83; P = .03 and .015), respectively. Conclusion: Adding vibration during a varied HIIT session increases the physiological demand of the cardiovascular and neuromuscular systems, indicating that this approach can be used to optimize the training stimulus of well-trained cyclists.

Publisher

Human Kinetics

Subject

Orthopedics and Sports Medicine,Physical Therapy, Sports Therapy and Rehabilitation

Reference36 articles.

1. High-intensity interval training, solutions to the programming puzzle: part I: cardiopulmonary emphasis;Buchheit M,2013

2. Continuous vs. interval training: a review for the athlete and the coach;MacDougall D,1981

3. Limiting factors for maximum oxygen uptake and determinants of endurance performance;Bassett DR,2000

4. Time at or near V˙O2max during continuous and intermittent running: a review with special reference to considerations for the optimisation of training protocols to elicit the longest time at or near V˙O2max;Midgley AW,2006

5. High-intensity intermittent exercise: methodological and physiological aspects;Tschakert G,2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3