Improvement of Performance and Reduction of Fatigue With Low-Level Laser Therapy in Competitive Cyclists

Author:

Lanferdini Fábio J.,Bini Rodrigo R.,Baroni Bruno M.,Klein Kelli D.,Carpes Felipe P.,Vaz Marco A.

Abstract

Evidence indicates that low-level laser therapy (LLLT) minimizes fatigue effects on muscle performance. However, the ideal LLLT dosage to improve athletes’performance during sports activities such as cycling is still unclear. Therefore, the goal of this study was to investigate the effects of different LLLT dosages on cyclists’performance in time-to-exhaustion tests. In addition, the effects of LLLT on the frequency content of the EMG signals to assess fatigue mechanisms were examined. Twenty male competitive cyclists participated in a crossover, randomized, double-blind, placebo-controlled trial. They performed an incremental cycling test to exhaustion (on day 1) followed by 4 time-to-exhaustion tests (on days 2–5) at their individual maximal power output. Before each time-to-exhaustion test, different dosages of LLLT (135, 270, and 405 J/thigh, respectively) or placebo were applied at the quadriceps muscle bilaterally. Power output and muscle activation from both lower limbs were recorded throughout the tests. Increased performance in time-to-exhaustion tests was observed with the LLLT-135 J (∼22 s; P < .01), LLLT-270 J (∼13 s; P = .03), and LLLT-405 J (∼13 s; P = .02) compared to placebo (149 ± 23 s). Although LLLT-270 J and LLLT-405 J did not show significant differences in muscle activation compared with placebo, LLLT-135 J led to an increased high-frequency content compared with placebo in both limbs at the end of the exhaustion test (P ≤ .03). In conclusion, LLLT increased time to exhaustion in competitive cyclists, suggesting this intervention as a possible nonpharmacological ergogenic agent in cycling. Among the different dosages, LLLT-135 J seems to promote the best effects.

Publisher

Human Kinetics

Subject

Orthopedics and Sports Medicine,Physical Therapy, Sports Therapy and Rehabilitation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3