Running Mechanics and Metabolic Responses With Water Bottles and Bottle Belt Holders

Author:

Vincent Heather K.,Zdziarski Laura A.,Fallgatter Kyle,Negron Giorgio,Chen Cong,Leavitt Trevor,Horodyski MaryBeth,Wasser Joseph G.,Vincent Kevin R.

Abstract

Purpose: To determine whether differential kinematics, kinetics, rates of energy use, and cardiopulmonary responses occur during running with water bottles and bottle belt holders compared with running only. Methods: Trained runners (N = 42; age 27.2 [6.4] y) ran on an instrumented treadmill for 4 conditions in a randomized order: control run (CON), handheld full water bottle (FULL; 16.9 fluid oz; 454 g), handheld half-full water bottle (HALF; 8.4 fluid oz; 227 g), and waist-worn bottle belt holder (BELT; hydration belt; 676 g). Gas exchange was measured using a portable gas analyzer. Kinetic and kinematic responses were determined by standard 3-dimensional videographic techniques. Interactions of limb side (right and left) by study condition (CON, FULL, HALF, and BELT) were tested for rates of oxygen use and energy expenditure and kinematic and kinetic parameters. Results: No significant limb-side × condition interactions existed for rates of oxygen use or energy expenditure. A significant interaction occurred with sagittal elbow flexion (P < .001). Transverse pelvic-rotation excursions differed on average 3.8° across conditions. The minimum sagittal hip-flexion moment was higher in the right leg in the HALF and BELT conditions compared with CON (P < .001). Conclusions: Carrying water by hand or on the waist does not significantly change the kinematics of running motion, rates of oxygen use and energy expenditure, or cardiopulmonary measures over short durations. Runners likely make adjustments to joint moments and powers that preserve balance and protect the lower-extremity joints while maintaining rates of oxygen use and energy expenditure.

Publisher

Human Kinetics

Subject

Orthopedics and Sports Medicine,Physical Therapy, Sports Therapy and Rehabilitation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3