Cycling at Altitude: Lower Absolute Power Output as the Main Cause of Lower Gross Efficiency

Author:

van Erck Dennis,Wenker Eric J.,Levels Koen,Foster Carl,de Koning Jos J.,Noordhof Dionne A.

Abstract

Background: Although cyclists often compete at altitude, the effect of altitude on gross efficiency (GE) remains inconclusive. Purpose: To investigate the effect of altitude on GE at the same relative exercise intensity and at the same absolute power output (PO) and to determine the effect of altitude on the change in GE during high-intensity exercise. Methods: Twenty-one trained men performed 3 maximal incremental tests and 5 GE tests at sea level, 1500 m, and 2500 m of acute simulated altitude. The GE tests at altitude were performed once at the same relative exercise intensity and once at the same absolute PO as at sea level. Results: Altitude resulted in an unclear effect at 1500 m (−3.8%; ±3.3% [90% confidence limit]) and most likely negative effect at 2500 m (−6.3%; ±1.7%) on pre-GE, when determined at the same relative exercise intensity. When pre-GE was determined at the same absolute PO, unclear differences in GE were found (−1.5%; ±2.6% at 1500 m; −1.7%; ±2.4% at 2500 m). The effect of altitude on the decrease in GE during high-intensity exercise was unclear when determined at the same relative exercise intensity (−0.4%; ±2.8% at 1500 m; −0.7%; ±1.9% at 2500 m). When GE was determined at the same absolute PO, altitude resulted in a substantially smaller decrease in GE (2.8%; ±2.4% at 1500 m; 5.5%; ±2.9% at 2500 m). Conclusion: The lower GE found at altitude when exercise is performed at the same relative exercise intensity is mainly caused by the lower PO at which cyclists exercise.

Publisher

Human Kinetics

Subject

Orthopedics and Sports Medicine,Physical Therapy, Sports Therapy and Rehabilitation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3