Validity of Force–Velocity Profiling Assessed With a Pneumatic Leg Press Device

Author:

Lindberg Kolbjørn,Eythorsdottir Ingrid,Solberg Paul,Gløersen Øyvind,Seynnes Olivier,Bjørnsen Thomas,Paulsen Gøran

Abstract

Purpose: The aim of this study was to examine the concurrent validity of force–velocity (FV) variables assessed across 5 Keiser leg press devices. Methods: A linear encoder and 2 independent force plates (MuscleLab devices) were mounted on each of the 5 leg press devices. A total of 997 leg press executions, covering a wide range of forces and velocities, were performed by 14 participants (29 [7] y, 181 [5] cm, 82 [8] kg) across the 5 devices. Average and peak force, velocity, and power values were collected simultaneously from the Keiser and MuscleLab devices for each repetition. Individual FV profiles were fitted to each participant from peak and average force and velocity measurements. Theoretical maximal force, velocity, and power were deduced from the FV relationship. Results: Average and peak force and velocity had a coefficient of variation of 1.5% to 8.6%, near-perfect correlations (.994–.999), and a systematic bias of 0.7% to 7.1% when compared with reference measurements. Average and peak power showed larger coefficient of variations (11.6% and 17.2%), despite excellent correlations (.977 and .952), and trivial to small biases (3.9% and 8.4%). Extrapolated FV variables showed near-perfect correlations (.983–.997) with trivial to small biases (1.4%–11.2%) and a coefficient of variation of 1.4% to 5.9%. Conclusions: The Keiser leg press device can obtain valid measurements over a wide range of forces and velocities across different devices. To accurately measure power, theoretical maximal power calculated from the FV profile is recommended over average and peak power values from single repetitions, due to the lower random error observed for theoretical maximal power.

Publisher

Human Kinetics

Subject

Orthopedics and Sports Medicine,Physical Therapy, Sports Therapy and Rehabilitation

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3