A New Model for Estimating Peak Oxygen Uptake Based on Postexercise Measurements in Swimming

Author:

Chaverri Diego,Schuller Thorsten,Iglesias Xavier,Hoffmann Uwe,Rodríguez Ferran A.

Abstract

Purpose:Assessing cardiopulmonary function during swimming is a complex and cumbersome procedure. Backward extrapolation is often used to predict peak oxygen uptake (V̇O2peak) during unimpeded swimming, but error can derive from a delay at the onset of V̇O2 recovery. The authors assessed the validity of a mathematical model based on heart rate (HR) and postexercise V̇O2 kinetics for the estimation of V̇O2peak during exercise.Methods:34 elite swimmers performed a maximal front-crawl 200-m swim. V̇O2 was measured breath by breath and HR from beat-to-beat intervals. Data were time-aligned and 1-s-interpolated. Exercise V̇O2peak was the average of the last 20 s of exercise. Postexercise V̇O2 was the first 20-s average during the immediate recovery. Predicted V̇O2 values (pV̇O2) were computed using the equation: pV̇O2(t) = V̇O2(t) HRend-exercise/HR(t). Average values were calculated for different time intervals and compared with measured exercise V̇O2peak.Results:Postexercise V̇O2 (0–20 s) underestimated V̇O2peak by 3.3% (95% CI = 9.8% underestimation to 3.2% overestimation, mean difference = –116 mL/min, SEE = 4.2%, P = .001). The best V̇O2peak estimates were offered by pV̇O2peak from 0 to 20 s (r2 = .96, mean difference = 17 mL/min, SEE = 3.8%).Conclusions:The high correlation (r2 = .86–.96) and agreement between exercise and predicted V̇O2 support the validity of the model, which provides accurate V̇O2peak estimations after a single maximal swim while avoiding the error of backward extrapolation and allowing the subject to swim completely unimpeded.

Publisher

Human Kinetics

Subject

Orthopedics and Sports Medicine,Physical Therapy, Sports Therapy and Rehabilitation

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3