Functional Threshold Power: Relationship With Respiratory Compensation Point and Effects of Various Warm-Up Protocols

Author:

Barranco-Gil David,Gil-Cabrera Jaime,Valenzuela Pedro L.,Alejo Lidia B.,Montalvo-Pérez Almudena,Talavera Eduardo,Moral-González Susana,Lucia Alejandro

Abstract

Purpose: The functional threshold power (FTP), which demarcates the transition from steady state to non-steady-state oxidative metabolism, is usually determined with a 20-minute cycling time trial that follows a standard ∼45-minute warm-up. This study aimed to determine if the standard warm-up inherent to FTP determination is actually necessary and how its modification or removal affects the relationship between FTP and the respiratory compensation point (RCP). Methods: A total of 15 male cyclists (age 35 [9] y, maximum oxygen uptake 66.4 [6.8] mL·kg−1·min−1) participated in this randomized, crossover study. Participants performed a ramp test for determination of RCP and maximum oxygen uptake. During subsequent visits, they performed a 20-minute time trial preceded by the “standard” warm-up that is typically performed before an FTP test (S-WU), a 10-minute warm-up at the power output (PO) corresponding to 60% of maximum oxygen uptake (60%-WU), or no warm-up (No-WU). FTP was computed as 95% of the mean PO attained during the time trial. Results: Although the FTP was correlated with the RCP independently of the warm-up (r = .89, .93, and .86 for No-WU, 60%-WU, and S-WU, respectively; all Ps < .001), the PO at RCP was higher than the FTP in all cases (bias ± 95% limits of agreement = 57 [24], 60 [23], and 57 [32] W for No-WU, 60%-WU, and S-WU, respectively; all Ps < .001 and effect size > 1.70). Conclusions: The FTP is highly correlated with the RCP but corresponds to a significantly lower PO, being these results independent of the warm-up performed (or even with no warm-up).

Publisher

Human Kinetics

Subject

Orthopedics and Sports Medicine,Physical Therapy, Sports Therapy and Rehabilitation

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3