Author:
Desai Arjun,Schmidt Andrew,Rubin Elka,Sandino Christopher,Black Marianne,Mazzoli Valentina,Stevens Kathryn,Boutin Robert,Ré Christopher,Gold Garry,Hargreaves Brian,Chaudhari Akshay
Abstract
While deep-learning-based MRI reconstruction and image analysis methods have shown promise, few have been translated to clinical practice. This may be a result of (1) paucity of end-to-end datasets that enable comprehensive evaluation from reconstruction to analysis and (2) discordance between conventional validation metrics and clinically useful endpoints. Here, we present the Stanford Knee MRI with Multi-Task Evaluation (SKM-TEA), a dataset of 155 clinical quantitative 3D knee MRI scans with k-space data, DICOM images, and dense tissue segmentation and pathology annotations to facilitate clinically relevant, comprehensive benchmarking of the MRI workflow. Dataset, code, and trained baselines are available at https://github.com/StanfordMIMI/skm-tea.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献