MULTI-OBJECTIVE GREEN DESIGN MODEL BASED ON COSTS, CO2 EMISSIONS AND SERVICEABILITY FOR HIGH-RISE BUILDINGS WITH A MEGA-STRUCTURE SYSTEM

Author:

Choi Jewoo1,Lee Seung Hyeong1,Hong Taehoon1,Lee Dong-Eun2,Park Hyo Seon1

Affiliation:

1. Department of Architectural Engineering, Yonsei University, Seoul, Korea

2. School of Architecture & Civil and Architectural Engineering, KyungPook National University, Daegu, Korea

Abstract

In light of growing environmental concerns, the reduction of CO2 emissions is increasingly vital. Particularly in the construction industry, a major contributor to global carbon emissions, addressing this issue is critical for environmental sustainability and mitigating the accelerating impacts of climate change. This study proposes the Optimal Green Design Model for Mega Structures (OGDMM) to optimise CO2 emissions, cost-effectiveness, and serviceability in highrise buildings with mega structures. The OGDMM examines the impact of each material and structural design of main members on these three critical aspects. Analytical results for high-rise buildings (120–200 m, slenderness ratio: 2.0–8.0) demonstrate that OGDMM can reduce CO2 emissions and costs by an average of 4.67% and 3.97%, respectively, without compromising serviceability. To ensure comprehensive evaluation, this study introduces five new evaluation indicators encompassing environmental, economic, and serviceability performances of high-rise buildings. Based on these criteria, optimised structural designs for high-rise buildings are classified into four categories according to slenderness ratio, leading to the formulation of corresponding design guidelines. The model’s applicability is further validated through its application to a 270-m-tall high-rise building in Korea, showing reductions in CO2 emissions and costs by 8.99% and 18.50%, respectively, while maintaining structural serviceability.

Publisher

Vilnius Gediminas Technical University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3