Affiliation:
1. Department of Architectural Engineering, Ajou University, Suwon, Republic of Korea
2. Department of Architecture, Dankook University, Yongin, Republic of Korea
Abstract
The precast concrete (PC) method involves manufacturing reinforced concrete building components in a factory that are then transported to and assembled on a construction site. Compared to conventional methods, PC is widely employed as an advantageous means of creating a sustainable environment and improving construction quality. However, due to time and cost increase, many modern PC factories inspect only randomly selected component samples, for which they write inspection reports using paper-based forms. The storage and management of these documents associated with inspections within factories are essential because any defects that occur during the manufacturing process adversely affect the subsequent delivery and assembly activities. In this study, a mobile application capable of automated documentation and the storage, and input of systematic data was developed to generate a system for comprehensive quality management and assurance within PC factories. The developed system was tested in a PC factory, achieving a 47% time-saving rate compared to the conventional inspection method. Inspection reports of the developed system contain considerably more information than those of the conventional method and fundamentally prevent the risk of document damage and loss as they are automatically archived on a server in digital format.
Publisher
Vilnius Gediminas Technical University
Subject
Strategy and Management,Civil and Structural Engineering
Reference30 articles.
1. Arashpour, M., Wakefield, R., Blismas, N., & Maqsood, T. (2015). Autonomous production tracking for augmenting output in off-site construction. Automation in Construction, 53, 13-21. https://doi.org/10.1016/j.autcon.2015.03.013
2. Ballard, G., Harper, N., & Zabelle, T. (2003). Learning to see work flow: an application of lean concepts to precast concrete fabrication. Engineering, Construction and Architectural Management, 10(1), 6-14. https://doi.org/10.1108/09699980310466505
3. Chen, J., & Mo, H. (2009). Numerical study on crack problems in segments of shield tunnel using finite element method. Tunnelling and Underground Space Technology, 24(1), 91-102. https://doi.org/10.1016/j.tust.2008.05.007
4. Clayton, M., Kunz, J., & Fischer, M. (1998). The Charrette test method. Center for Integrated Facility Engineering. https://cife.stanford.edu/charrette-test-method
5. Gan, Y., Shen, L., Chen, J., Tam, V. W. Y., Tan, Y., & Illankoon, I. M. C. S. (2017). Critical factors affecting the quality of industrialized building system projects in China. Sustainability, 9(2), 216. https://doi.org/10.3390/su9020216
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献