SEISMIC MITIGATION EFFECT FOR LARGE-SPACE UNDERGROUND STRUCTURES CONSIDERING SPATIALLY VARYING SOIL PROPERTIES

Author:

He Zhiming1,Chen Qingjun2

Affiliation:

1. School of Civil Engineering, Tongji University, Shanghai, 200092, China; School of Civil Engineering, Guangzhou University, Guangzhou, 510006, Guangdong Province, China

2. School of Civil Engineering, Tongji University, Shanghai, 200092, China

Abstract

The seismic response of the large-space underground structure (LSUS) is significantly influenced by the physical properties of the surrounding soil media, while the soil owns a strong spatial variability. This study proposes a seismic response analysis process of the soil-LSUS interaction system is proposed, which can consider the characteristic of the spatially distributed soil properties. The proposed process begins with establishing the spatially random field model of the soil properties using the improved latent space method. Then, the model is calibrated based on the real data and Bayesian approach, and the realization of the random field is accomplished. Further, the soil-LSUS interaction finite element (FE) model is established, which incorporating the soil physical properties generated from the random field. Finally, the nonlinear time-history analysis of the soil-LSUS interaction FE model is conducted. As an illustration of the proposed process, a typical LSUS located in Guangzhou is selected as an example, and the seismic mitigation measure which the lead-filled steel tube damper (LFSTD) is installed between the intermediate column and the top beam is adopted for the LSUS. The influence of the spatial variability of soil properties on the seismic mitigation effect of the LSUS is investigated. Results indicate that the spatial variability of the soil properties can cause a minor influence on the force and deformation of the intermediate column and the energy dissipation ratio between the LFSTD and structure, while it can bring a significant influence on the maximum deformation and force and the shape of the hysteresis loop of the LFSTD.

Publisher

Vilnius Gediminas Technical University

Subject

Strategy and Management,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3