Affiliation:
1. Vilniaus Gedimino technikos universitetas, Vilnius, Lietuva
2. UAB „LTG Link“, Vilnius, Lietuva
Abstract
Technical support of IT infrastructure is a crucial aspect of organizational operations, with the most challenging task being ensuring service continuity. Quality support guarantees high IT efficiency, but complex incidents reduce support quality and require effective management. Incident management includes configuration processes and control of technical solutions. To improve technical support, adhering to both quantitative and qualitative standards and considering system specifics is necessary. According to service level agreements (SLA), the resolution time of incidents is important. „Service Desk“ tools, applying machine learning methods, can help optimize these processes. Incorrectly classified user requests lead to additional work for the IT team and delay incident resolution. Machine learning methods, such as K-means clustering, Random Forest regression, and classification, can optimize incident management and speed up resolution time. The research analyzes „Service Desk“ incident data to model resolution times and improve incident management.
Publisher
Vilnius Gediminas Technical University
Reference15 articles.
1. Agarwal, S., Aggarwal, V., Akula, A. R., Dasgupta, G. B., & Sridhara, G. (2017). Automatic problem extraction and analysis from unstructured text in IT tickets. IBM Journal of Research and Development, 61(1), 41-52. https://doi.org/10.1147/JRD.2016.2629318
2. Agarwal, S., Sindhgatta, R., & Sengupta, B. (2012). SmartDispatch: Enabling efficient ticket dispatch in an IT service environment. In The 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1393-1401), Beijing, China. https://doi.org/10.1145/2339530.2339744
3. Altintas, M., & Tantug, A. C. (2014). Machine learning based ticket classification in issue tracking systems. In Proceedings of the International Conference on Artificial Intelligence and Computer Science (AICS) (pp. 195-207), Bandung, Indonesia.
4. Arthur, D., & Vassilvitskii, S. (2007). k-means++: The advantages of careful seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms (pp. 1027-1035). Society for Industrial and Applied Mathematics.
5. Bartolini, C., Stefanelli, C., & Tortonesi, M. (2009). Business-impact analysis and simulation of critical incidents in IT service management. In 2009 IFIP/IEEE International Symposium on Integrated Network Management (pp. 9-16), New York, NY, USA. https://doi.org/10.1109/INM.2009.5188781