IDENTIFICATION AND MODELLING PROCESS OF DEFINING TEMPERATURE GRADIENT IN AIRPORT PAVEMENT

Author:

Ahyudanari Ervina1,Shafiq Nasir1,Kamaruddin Ibrahim1

Affiliation:

1. Universiti Teknologi Petronas

Abstract

Preserving airport pavement means guarantying the safety operation of aircraft movements. There are four aspects that cause progressive pavement deterioration, i.e. the construction design and process, selected material, and maintenance management. One of the traffic aspects, jet engine exhaust, has not been discovered yet. The load pattern of the jet exhaust follows the schedule of aircraft traffic. The assumption held in this research is that the thermal load during aircraft movement may generate a high temperature, which is induced into pavement layers. The objective of this research is to determine the temperature gradient in the pavement, caused by the jet exhaust. This paper discusses the process of determining the temperature gradient in four stages, i.e. by carrying out the gap analysis, evaluation of pavement structures, determination of the load path and the magnitude, and defining the temperature gradient. The temperature gradient in the pavement layer is determined through the development of a model of cyclic loading. The thermal cyclic load follows the aircraft schedule pattern. The pavement temperature receives the thermal cyclic load of the sinusoid of solar radiation. The results indicate that the temperature of the pavement is increased and pavement temperature rises by 35 °C. However, after 60 seconds the remaining temperature of the pavement layer decreases to the initial temperature, which is caused by solar radiation.

Publisher

Vilnius Gediminas Technical University

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3