FLIGHT PHASE CLASSIFICATION FOR SMALL UNMANNED AERIAL VEHICLES

Author:

Leško Jakub1ORCID,Andoga Rudolf1ORCID,Bréda Róbert1ORCID,Hlinková Miriam1ORCID,Fözö Ladislav2ORCID

Affiliation:

1. Department of Avionics, Faculty of Aeronautics, Technical University of Košice, Košice, Slovakia

2. Department of Aviation Engineering, Faculty of Aeronautics, Technical University of Košice, Košice, Slovakia

Abstract

This article describes research on the classification of flight phases using a fuzzy inference system and an artificial neural network. The aim of the research was to identify a small set of input parameters that would ensure correct flight phase classification using a simple classifier, meaning a neural network with a low number of neurons and a fuzzy inference system with a small rule base. This was done to ensure that the created classifier could be implemented in control units with limited computational power in small affordable UAVs. The functionality of the designed system was validated by several experimental flights using a small fixed-wing UAV. To evaluate the validity of the proposed system, a set of special maneuvers was performed during test flights. It was found that even a simple feedforward artificial neural network could classify basic flight phases with very high accuracy and a limited set of three input parameters.

Publisher

Vilnius Gediminas Technical University

Subject

Aerospace Engineering

Reference29 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3