DOES MACHINE LEARNING PREDICTION DAMPEN THE INFORMATION ASYMMETRY FOR NON-LOCAL INVESTORS?

Author:

Jung Jinwoo1ORCID,Kim Jihwan1ORCID,Jin Changha1ORCID

Affiliation:

1. Department of Economics, College of Business and Economics, Hanyang University ERICA, Ansan, Republic of Korea

Abstract

In this study, we examine the prediction accuracy of machine learning methods to estimate commercial real estate transaction prices. Using machine learning methods, including Random Forest (RF), Gradient Boosting Machine (GBM), Support Vector Machine (SVM), and Deep Neural Networks (DNN), we estimate the commercial real estate transaction price by comparing relative prediction accuracy. Data consist of 19,640 transaction-based office properties provided by Costar corresponding to the 2004–2017 period for 10 major U.S. CMSA (Consolidated Metropolitan Statistical Area). We conduct each machine learning method and compare the performance to identify a critical determinant model for each office market. Furthermore, we depict a partial dependence plot (PD) to verify the impact of research variables on predicted commercial office property value. In general, we expect that results from machine learning will provide a set of critical determinants to commercial office price with more predictive power overcoming the limitation of the traditional valuation model. The result for 10 CMSA will provide critical implications for the out-of-state investors to understand regional commercial real estate market.

Publisher

Vilnius Gediminas Technical University

Subject

Strategy and Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3