ANALYSIS OF THE RADON CONCENTRATIONS IN NATURAL MINERAL AND TAP WATER USING LUCAS CELLS TECHNIQUE

Author:

Calin M. R.1,Ion A. C.2,Radulescu I.1,Simion C. A.3,Mincu M. M.1,Ion I.2

Affiliation:

1. Horia Hulubei National Institute for Physics and Nuclear Engineering – IFIN HH, SALMROM Laboratory, 30 Reactorului Street, P.O. Box MG-6, 077125 Magurele, Romania

2. Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 1–7 Polizu Street, 011061 Bucharest, Romania

3. Horia Hulubei National Institute for Physics and Nuclear Engineering – IFIN HH, BETALAB Laboratory, 30 Reactorului Street, P.O. Box MG-6, 077125 Magurele, Romania

Abstract

The aims of this study were to determine the radon concentration in natural mineral and tap water and to estimate the resulting ingestion doses received by adults. Physical-chemical characteristics of water samples have also been investigated. In the last years have been an increase of water consumption of both, natural mineral and tap, many sources and producers being available on the market. Thus, the physical-chemical and radiologic parameters of water must be in compliance with the Drinking Water Directive (DWD). Thus, the study presents an assessment of the radioactivity due to 222Rn and 3H in several mineral natural water samples from the north region of Romania, but also in several tap water samples. The methods used were based on gamma spectrometry, gross alpha-beta measurements and beta spectroscopy, but also ICP-MS for chemical parameters. The results of this work showed that the geology and rock types clearly influence the water radon concentration. The radon concentration is lower in the water that passes through sedimentary rocks than that passing through granitic rocks. An important aspect of this work is to provide reliable information regarding radon and tritium concentrations. Radon concentration varied between 0.15±0.05 Bq/L and 11.35±2.97 Bq/L in the natural mineral water samples and between 0.17±0.05 Bq/L and 8.51±2.34 Bq/L in the tap water samples. An estimation of annual effective radiation dose based on the sample results was also made. Calculated values for ingestion dose due to regular consumption of water does not induce a health risk because of the intake of various radionuclides contained in the water. The maximum values being of 47.38 µSv/y. The determined values for the collected samples are below recommended reference levels, but more important aspect is that this study emphasise environmental sustainability in the investigated area.

Publisher

Vilnius Gediminas Technical University

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3