USE OF THE SSIB4/TRIFFID MODEL COUPLED WITH TOPMODEL TO INVESTIGATE THE EFFECTS OF VEGETATION AND CLIMATE ON EVAPOTRANSPIRATION AND RUNOFF IN A SUBALPINE BASIN OF SOUTHWESTERN CHINA

Author:

Deng Huiping1,Dan Li2,Deng Huanguang1,Xiao Yan1,Wang Qian1

Affiliation:

1. School of Environment and Planning, Liaocheng University, 252059 Liaocheng, China

2. CAS Key Laboratory of Regional Climate–Environment Research for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029 Beijing, China

Abstract

It is important to understand the response of vegetation dynamics and surface water budget to the changing climate. To investigate the effects of vegetation and climate change on evapotranspiration and runoff on a basin scale, the SSiB4T/TRIFFID (SSiB4/TRIFFID coupled with TOPMODEL) is used to perform long-term dynamic simulations of vegetation succession and the water balance under different climate scenarios for a subalpine basin. The results of all experiments show that fraction of vegetation changes from a dominance of C3 grasses to tundra shrubs and then gradually approaches equilibrium with a dominance of forests. Change to evapotranspiration is very sensitive to temperature changes but is not sensitive to precipitation changes when the temperature remains unchanged. Runoff is very sensitive to changes in both temperature and precipitation. In the increase of temperature, evapotranspiration of forests increases the most among the three vegetation types. From the control run to the [T+5, (1+40%)P] run (A temperature increase of 5 °C, an increase in precipitation of 40%), the role of forests in increasing runoff changes to a reduction in runoff.

Publisher

Vilnius Gediminas Technical University

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3