COMPARISON OF REMAINING COAL-BURNING ASH-BASED ON CD, PB, AND HG CONCENTRATION AT DIFFERENT TEMPERATURES: A CASE STUDY IN ACEH PROVINCE

Author:

Gani Asri1,Erdiwansyah Erdiwansyah2,Sardjono R. E.3,Mariana Mariana1,Mamat Rizalman4

Affiliation:

1. Department of Chemical Engineering, Universitas Syiah Kuala, 23111 Banda Aceh, Indonesia; Research Center for Environmental and Natural Resources, Universitas Syiah Kuala, 23111 Banda Aceh, Indonesia

2. Research Center for Environmental and Natural Resources, Universitas Syiah Kuala, 23111 Banda Aceh, Indonesia; Faculty of Engineering, Universitas Serambi Mekkah, 23245 Banda Aceh, Indonesia

3. Department of Chemistry, Faculty of Mathematics and Science, Universitas Pendidikan Indonesia, 40522 Bandung, Indonesia

4. Faculty of Mechanical Engineering, Universiti Malaysia Pahang, 26600 Pahang, Malaysia

Abstract

This study aims to investigate the efficiency level of absorption of heavy metals Cd, Pb, and Hg. Combustion is carried out using coal with the addition of absorbent ratios of 2%, 4%, 6%, 8%, and 10%. The adsorbent used is natural zeolite which is widely available and inexpensive. This study provides practical implications for the easy and inexpensive removal of heavy metal emissions during combustion. The results show that the maximum efficiency level for Cd metal reached 22.96% which was recorded at a temperature of 600 °C for an adsorbent ratio of 10%. The maximum efficiency level of Pb metal from the experimental results was obtained at a temperature of 600 °C with an adsorbent ratio of 10% to 10.83%. Meanwhile, the efficiency level for Hg metal produced was 0.05% which was recorded at the adsorbent ratio of 10% at 800 °C. The maximum total capacity of Pb metal for each tested combustion temperature was 600 °C 39.85 mg/kg, 700 °C 25.43 mg/kg, and 800 °C 7.21 mg/kg. On the other words, the higher the combustion temperature tested, the lower the absorption efficiency rate obtained.

Publisher

Vilnius Gediminas Technical University

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3