Study of different data science methods for demand prediction and replenishment forecasting at retail network

Author:

Iurasov Aleksei1,Stanelyte Giedre1

Affiliation:

1. Department of Business Technologies and Entrepreneurship, Faculty of Business Management, Vilnius Gediminas Technical University, Saulėtekio av. 11, LT-10223, Vilnius, Lithuania

Abstract

The demand prediction becoming an essential tool to remain or even lead in the competitionamong the retail businesses. A well-done demand prediction model could help retailer to track the level ofinventory, orders and sales in the most effective way in which the best results could be achieved. However,there are many different methods and opinions of how to create a demand prediction model. In this paper,we will analyse the most commonly used methods of Linear regression, Logistic Regression, ProbabilisticNeural Network, Bayesian Additive Regression Trees, Random Forest and Fuzzy Logic with their specificationsand limitations found in studies of authors. After review performed all methods will be compared accordingto characteristics selected. Moreover, in order to get more practical results the accuracy of LogisticRegression and Random Forest methods will be compared based on data of milk sales collected from retailnetwork. For constructing of decision support system for retail network, we need to go beyond demandprediction one-step to replenishment forecasting. It was concluded that there is no best method to forecastreplenishment and results can differ based on the data and conditions analysing. In every situation authorsseeking to select the method with the highest accuracy and the lowest number of errors possible. Limitationsof research: limited number of goods and stores included in the modelling.

Publisher

VGTU Technika

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3