USING PIXEL-BASED AND OBJECT-BASED METHODS TO CLASSIFY URBAN HYPERSPECTRAL FEATURES

Author:

Hadavand Ahmad1,Mokhtarzadeh Mehdi2,Zoej Mohammad Javad Valadan2,Homayouni Saeid3,Saadatseresht Mohammad1

Affiliation:

1. University of Tehran

2. K. N. Toosi University

3. University of Ottawa

Abstract

Object-based image analysis methods have been developed recently. They have since become a very active research topic in the remote sensing community. This is mainly because the researchers have begun to study the spatial structures within the data. In contrast, pixel-based methods only use the spectral content of data. To evaluate the applicability of object-based image analysis methods for land-cover information extraction from hyperspectral data, a comprehensive comparative analysis was performed. In this study, six supervised classification methods were selected from pixel-based category, including the maximum likelihood (ML), fisher linear likelihood (FLL), support vector machine (SVM), binary encoding (BE), spectral angle mapper (SAM) and spectral information divergence (SID). The classifiers were conducted on several features extracted from original spectral bands in order to avoid the problem of the Hughes phenomenon, and obtain a sufficient number of training samples. Three supervised and four unsupervised feature extraction methods were used. Pixel based classification was conducted in the first step of the proposed algorithm. The effective feature number (EFN) was then obtained. Image objects were thereafter created using the fractal net evolution approach (FNEA), the segmentation method implemented in eCognition software. Several experiments have been carried out to find the best segmentation parameters. The classification accuracy of these objects was compared with the accuracy of the pixel-based methods. In these experiments, the Pavia University Campus hyperspectral dataset was used. This dataset was collected by the ROSIS sensor over an urban area in Italy. The results reveal that when using any combination of feature extraction and classification methods, the performance of object-based methods was better than pixel-based ones. Furthermore the statistical analysis of results shows that on average, there is almost an 8 percent improvement in classification accuracy when we use the object-based methods.

Publisher

Vilnius Gediminas Technical University

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3