FACTORS INFLUENCING FRAUDULENT TRANSACTIONS FROM BIG DATA PERSPECTIVE

Author:

Levon Fabiana1,Maknickienė Nijolė1ORCID

Affiliation:

1. Department of Financial Engineering, Faculty of Business Management, Vilnius Gediminas Technical University, Saulėtekio al. 11, 10223 Vilnius, Lithuania

Abstract

This article focuses on fraudulent behaviour and patterns as well as ways of detecting such patterns by using Big Data. The study analyses scientific articles to examine types of financial fraud and their detection techniques as well as develops a model that is based on factors characterizing fraudulent credit card transactions made across USA. Regression analysis, correlation and descriptive statistics analysis is applied. Statistically significant results are found indicating a causal relationship between fraudulent transactions and transactions made in Alaska, during the month of October and on a Thursday. Although, the impact of these relationships is relatively small. Expanding the dataset with more numerical variables that could be used for identifying fraudulent transactions is advised for future research as to better the overall fit of the model.

Publisher

Vilnius Gediminas Technical University

Reference27 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3