Affiliation:
1. Dipartimento di Matematica e Informatica Università degli Studi di Salerno Via Ponte Don Melillo, 84084 Fisciano (SA)
Abstract
We deal with the numerical scheme for the Liouville Master Equation (LME) of a kind of Piecewise Deterministic Processes (PDP) with memory, analysed in [2]. The LME is a linear system of hyperbolic PDEs, written in non‐conservative form, with non‐local boundary conditions. The solutions of that equation are time dependent marginal distribution functions whose sum satisfies the total probability conservation law. In [2] the convergence of the numerical scheme, based on the Courant‐Isaacson‐Rees jointly with a direct quadrature, has been proved under a Courant‐Friedrichs‐Lewy like (CFL) condition. Here we show that the numerical solution is monotonic under a similar CFL condition. Moreover, we evaluate the conservativity of the total probability for the calculated solution. Finally, an implementation of a parallel algorithm by using the MPI library is described and the results of some performance tests are presented.
Publisher
Vilnius Gediminas Technical University
Subject
Modeling and Simulation,Analysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献