Affiliation:
1. Institute of Mathematics and Natural Sciences, Tallinn University Narva Road 25, 10120 Tallinn, Estonia
Abstract
Certain summability methods for functions and sequences are compared by their speeds of convergence. The authors are extending their results published in paper [9] for Riesz‐type families {Aα} (α > α0 ) of summability methods Aα . Note that a typical Riesz‐type family is the family formed by Riesz methods Aα = (R, α), α > 0. In [9] the comparative estimates for speeds of convergence for two methods Aγ and Aβ in a Riesz‐type family {Aα}were proved on the base of an inclusion theorem. In the present paper these estimates are improved by comparing speeds of three methods Aγ, Aβ and Aδ on the base of a Tauberian theorem. As a result, a Tauberian remainder theorem is proved. Numerical examples given in [9] are extended to the present paper as applications of the Tauberian remainder theorem proved here.
Publisher
Vilnius Gediminas Technical University
Subject
Modelling and Simulation,Analysis
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献