PECULIARITIES OF DESTRUCTION MECHANISM OF POLYMERIC INTUMESCENT FIRE PROTECTIVE COATINGS

Author:

MAČIULAITIS Romualdas1,GRIGONIS Mindaugas2,MALAIŠKIENĖ Jurgita1,LIPINSKAS Donatas2

Affiliation:

1. Vilnius Gediminas Technical University

2. Fire Research Centre of the Fire and Rescue Department under the Ministry of the Interior of the Republic of Lithuania

Abstract

The article describes the destruction mechanism of intumescent fire protective paint coatings at the time of their aging under the impact of simulated climatic factors. Steel plates covered in anti-corrosion varnishes and intumescent fire protective paint coatings of several types and different composition were used in the research, while certain samples were also additionally covered in protective coatings protecting from environmental effects. SEM, DTA and FT-IR researches were conducted on control samples and samples after aging. Aging was performed in 3 ways: according to regimes I and II in the laboratory and having stored them for 12 months under the outdoor conditions under the roof. The aging mechanism of materials was determined to be very similar when using different methods of aging: with increasing number of cycles, the extent of damage to the surfaces and their diversity increase. In all cases, chemical material changes were observed after artificial aging cycles compared to control samples. In aged samples, there were some new connections occurring, while others changed or disappeared judging from the number of waves and intensity of peaks, which shows that certain compounds form, while others change and disintegrate under the influence of environmental heat and mass exchange.

Publisher

Vilnius Gediminas Technical University

Subject

Strategy and Management,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3