ASSESSMENT OF MECHANICAL PROPERTIES OF HIGH STRENGTH CONCRETE (HSC) AFTER EXPOSURE TO HIGH TEMPERATURE

Author:

DRZYMAŁA Tomasz1,JACKIEWICZ-REK Wioletta2,GAŁAJ Jerzy1,ŠUKYS Ritoldas3

Affiliation:

1. The Main School of Fire Service

2. Warsaw University of Technology

3. Vilnius Gediminas Technical University

Abstract

There has been a tendency to design ever slender building construction using high strength concrete in recent years. Application of HSC is also growing in tunnel construction. One of the most important challenges is to control explosive spalling of concrete and the method recommended by Eurocode 2 (EN 1992-1-2:2008/NA:2010P) is addition of polypropylene fibres to the mix. The purpose of the research described in this paper was to evaluate the changes of mechanical properties of HSC exposed to the effect of high temperature. The tests were carried out on three types of high strength concrete: air-entrained concrete, polypropylene fibre-reinforced concrete and reference concrete having constant water/cement ratio. The properties of hardened concrete including compressive strength, tensile splitting strength, flexural strength and E-modulus were studied. The latter tests were carried out on both on concrete cured at 20 °C and concrete subjected to high-temperature conditions at 300 °C, 450 °C and 600 °C. The results enabled us to evaluate the effect of high-temperature conditions on the properties of high-performance concrete and compare the effectiveness of the two methods designed to improve the high-temperature performance of the concrete: addition of polypropylene fibres and entrainment of air.

Publisher

Vilnius Gediminas Technical University

Subject

Strategy and Management,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3