QUANTILE-ORIENTED GLOBAL SENSITIVITY ANALYSIS OF DESIGN RESISTANCE

Author:

Kala Zdeněk1

Affiliation:

1. Department of Structural Mechanics, Faculty of Civil Engineering, Brno University of Technology, Veveří 95, 602 00, Brno, Czech Republic

Abstract

The article investigates the application of a new type of global quantile-oriented sensitivity analysis (called QSA in the article) and contrasts it with established Sobol’ sensitivity analysis (SSA). Comparison of QSA of the resistance design value (0.1 percentile) with SSA is performed on an example of the analysis of the resistance of a steel IPN 200 beam, which is subjected to lateral-torsional buckling. The resistance is approximated using higher order polynomial metamodels created from advanced non-linear FE models. The main, higher order and total effects are calculated using the Latin Hypercube Sampling method. Noticeable differences between the two methods are found, with QSA apparently revealing higher sensitivity of the resistance design value to random input second and higher order interactions (compared to SSA). SSA cannot identify certain reliability aspects of structural design as comprehensively as QSA, particularly in relation to higher order interactions effects of input imperfections. In order to better understand the reasons for the differences between QSA and SSA, two simple examples are presented, where QSA (median) and SSA show a general agreement in the calculation of certain sensitivity indices.

Publisher

Vilnius Gediminas Technical University

Subject

Strategy and Management,Civil and Structural Engineering

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Random forest based quantile-oriented sensitivity analysis indices estimation;Computational Statistics;2024-01-12

2. Time-dependent reliability analysis of stainless steel members and bridges;PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE ON X-RAY MICROSCOPY – XRM2022;2023

3. Sensitivity analysis of limit states in civil engineering: From model outputs to reliability assessment;PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE ON X-RAY MICROSCOPY – XRM2022;2023

4. Global sensitivity analysis of steel beam resistance using finite element simulations;PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE ON X-RAY MICROSCOPY – XRM2022;2023

5. Buckling curves of stainless steel CHS members: Current state and proposed provisions;Journal of Constructional Steel Research;2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3