Affiliation:
1. School of Mechanical Engineering, Southeast University, Nanjing, China
Abstract
To reduce rear-end collision risks and improve traffic safety, a novel rear-end collision escape algorithm is proposed for intelligent vehicles supported by vehicular communication. Numerous research has been carried out on rear-end collision avoidance. Most of these studies focused on maintaining a safe front clearance of a vehicle while only few considered the vehicle’s rear clearance. However, an intelligent vehicle may be collided by a following vehicle due to wrong manoeuvres of an unskilled driver of the following vehicle. Hence, it is essential for an intelligent vehicle to maintain a safe rear clearance when there is potential for a rear-end collision caused by a following vehicle. In this study, a rear-end collision escape algorithm is proposed to prevent rear-end collisions by a following vehicle considering both straight and curved roads. A trajectory planning method is designed according to the motions of the considered intelligent vehicle and the corresponding adjacent vehicles. The successive linearization and the Model Predictive Control (MPC) algorithms are used to design a motion controller in the proposed algorithm. Simulations were performed to demonstrate the effectiveness of the proposed algorithm. The results show that the proposed algorithm is effective in preventing rear-end collisions caused by a following vehicle.
Publisher
Vilnius Gediminas Technical University
Subject
Mechanical Engineering,Automotive Engineering