PEDESTRIAN–BUS ROUTE AND PICKUP LOCATION PLANNING FOR EMERGENCY EVACUATION

Author:

Lu Weike1,Wang Feng2,Liu Lan1,Hu Guojing3,Mao Jiannan1

Affiliation:

1. School of Transportation and Logistics, Southwest Jiaotong University, Chengdu, China

2. Ingram School of Engineering, Texas State University, San Marcos, United States

3. Dept of Mathematics and Statistical Sciences, Jackson State University, Jackson, United States

Abstract

Planning for a bus-based regional evacuation is essential for emergency preparedness, especially for hurricane or flood prone urban environments with large numbers of transit-dependent or transit-captive populations. This paper develops an optimization-based decision-support model for pedestrian–bus evacuation planning under bus fleet, pedestrian and bus routes, and network constraints. Aiming to minimize the evacuation duration time, an optimization model is proposed to determine the optimal pickup nodes for evacuees to assemble using existing pedestrian routes, and to allocate available bus fleet via bus routes and urban road network to transport the assembled evacuees between the pickup nodes and designated public shelters. The numerical examples with two scenarios based on the Sioux Falls street network from North Dakota (United States) demonstrates that this model can be used to optimize the evacuation duration time, the location of pickup nodes and bus assignment simultaneously.

Publisher

Vilnius Gediminas Technical University

Subject

Mechanical Engineering,Automotive Engineering

Reference23 articles.

1. Planning for a bus-based evacuation

2. CCTV. 2017. A power supply failure happens in Shang metro, CCTV News 14 April 2017. Available from Internet: http://news.cctv.com/2017/04/14/ARTI3Bj1nhIeJ6chNAU-waSO1170414.shtml (in Chinese).

3. Modeling and Performance Assessment of a Transit-Based Evacuation Plan within a Contraflow Simulation Environment

4. Solving the bus evacuation problem and its variants

5. Emergency Evacuation Planning and Preparedness of Transit Facilities

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3