CHALLENGES IN HOMOLOGATION PROCESS OF VEHICLES WITH ARTIFICIAL INTELLIGENCE

Author:

Zöldy Máté1,Szalay Zsolt1,Tihanyi Viktor1

Affiliation:

1. Dept of Automotive Technologies, Faculty of Transportation Engineering and Vehicle Engineering, Budapest University of Technology and Economics, Hungary

Abstract

The traditional automotive homologation processes aim to ensure the safety of vehicles on public roads. Autonomous Vehicles (AV) with Artificial Intelligence (AI) are difficult to account for in these conventional processes. This research aims to map and attempt to close the gaps in the areas of testing and approval of such automated and connected vehicles. During our research into the homologation process of traditional vehicles; functional safety issues, challenges of AI in safety critical systems, along with questions of cyber security were investigated. Our process focuses on the integration of the already existing functions and prototypes into new products safely. As a key result, we managed to identify the main gaps between Information and Communication Technology (ICT) and automotive technology: the rigidity of the automotive homologation process, functional safety, AI in safety critical areas and we propose a solution.

Publisher

Vilnius Gediminas Technical University

Subject

Mechanical Engineering,Automotive Engineering

Reference29 articles.

1. Andreades, C.; Kendrick, J.; Poresky, C.; Peterson, P. 2017. Cyber Security in Civilian Aviation: Insights for Advanced Nuclear Technologies. UCBTH-17-001 Department of Nuclear Engineering, University of California, Berkeley, US. 10 p. Available from Internet: http://fhr.nuc.berkeley.edu/wp-content/uploads/2017/04/UCB-TH-17-001-Cybersecurity-in-Civilian-Aviation.pdf

2. EC. 2020. The EU Cybersecurity Act. European Commission, Brussels, Belgium. Available from Internet: https://ec.europa.eu/digital-single-market/en/eu-cybersecurity-act

3. ECOSOC. 1968. Convention on Road Traffic: Done at Vienna on 8 November 1968. Economic and Social Council (ECOSOC), United Nations.

4. Edelstein, S. 2015. Ford’s New GT has More Lines of Code than a Boeing Jet Airliner. Digital Trends, Designtechnica Corporation. Available from Internet: https://www.digitaltrends.com/cars/the-ford-gt-uses-more-lines-of-code-than-a-boeing-787

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3