MODELLING RAIL THERMAL DIFFERENTIALS DUE TO BENDING AND DEFECTS

Author:

Bosomworth Chris1,Spiryagin Maksym1,Alahakoon Sanath1,Cole Colin1

Affiliation:

1. Centre for Railway Engineering, Central Queensland University, Rockhampton, Australia; Australasian Centre for Rail Innovation, Canberra, Australia

Abstract

Rail foot flaws have the potential to cause broken rails that can lead to derailment. This is not only an extremely costly issue for a rail operator in terms of damage to rolling stock, but has significant flow-on effects for network downtime and a safe working environment. In Australia, heavy haul operators run up to 42.5 t axle loads with trains in excess of 200 wagons and these long trains produce very large cyclic rail stresses. The early detection of foot flaws before a broken rail occurs is of high importance and there are currently no proven techniques for detecting rail foot flaws on trains at normal running speeds. This paper shall focus on the potential use of thermography as a detection technique and begin investigating the components of heat transfer in the rail to determine the viability of thermography for detecting rail foot flaws. The paper commences with an introduction to the sources of heat generation in the rail and modelling approaches for the effects of bending, natural environmental factors and transverse defects. It concludes with two theoretical case studies on heat generated due to these sources and discusses how they may inform the development of a practical thermography detection methodology.

Publisher

Vilnius Gediminas Technical University

Subject

Mechanical Engineering,Automotive Engineering

Reference43 articles.

1. Abidin, I. Z.; Umar, M. Z.; Yusof, M. Y.; Ibrahim, M. M.; Hamzah, A. R.; Salleh, M. N. 2012. Advantages and applications of eddy current thermography testing for comprehensive and reliable defect assessment, in 18th World Conference on Nondestructive Testing, 16–20 April 2012, Durban, South Africa, 1–10.

2. Rail Flaw Detection Technologies for Safer, Reliable Transportation: A Review

3. ARTC. 2019. Ultrasonic Testing By Continuous Rail Flaw Detection Vehicle. ETE-01-02. Australian Rail Track Corporation (ARTC). Infrastructure Standards: ARTC Extranet. 12 p. Available from Internet: https://extranet.artc.com.au/docs/eng/track-civil/procedures/rail/ETE-01-02.pdf

4. AS 1085.1-2002. Railway Track Material. Part 1: Steel Rails.

5. ATSB. 2015. Derailment of freight train 6DA2 near Marryat, South Australia, on 26 July 2014. ATSB Transport Safety Report – Rail Occurrence Investigation RO-2014-014. Australian Transport Safety Bureau (ATSB). 24 p. Available from Internet: https://www.atsb.gov.au/publications/investigation_reports/2014/rair/ro-2014-014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3