BATTERY SUPPLIER DEVELOPMENT FOR NEW ENERGY VEHICLES BY A PROBABILISTIC LINGUISTIC UTASTAR METHOD

Author:

Liao Huchang1,Liu Zhihang1,Banaitis Audrius2,Zavadskas Edmundas Kazimieras3,Zhou Xiang4

Affiliation:

1. Business School, Sichuan University, Chengdu, China

2. Dept of Construction Management and Real Estate, Vilnius Gediminas Technical University, Vilnius, Lithuania

3. Institute of Sustainable Construction, Vilnius Gediminas Technical University, Vilnius, Lithuania

4. School of Finance, Anhui University of Finance and Economics, Bengbu, China

Abstract

New energy vehicles can improve the environmental pollution and thus benefit people’s healthy life. As a core component of new energy vehicles, batteries play a crucial role in the performance of new energy vehicles. There are many factors to be considered when selecting the battery for a new energy vehicle, so it can be regarded as a MCDM problem. This study builds a useful model by combining the PLTS with the UTASTAR method. Firstly, to represent the uncertain and fuzzy information of experts, we use the PLTSs to accurately express the linguistic information of experts. Given that the weights of criteria are often different and there are some preferences for criteria among experts, we use the BWM to determine the weights of criteria, which can deal with hesitant information and make the result suitable for experts’ preferences. The method proposed in this study can sort all alternatives based on a small amount of data. To show its applicability, we implement the method in the selection of new energy vehicle battery suppliers. Comparative analysis and discussions are made to verify the effectiveness of the method.

Publisher

Vilnius Gediminas Technical University

Subject

Mechanical Engineering,Automotive Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3