STUDY ON DYNAMIC INFLUENCE OF PASSENGER FLOW ON INTELLIGENT BUS TRAVEL SERVICE MODEL

Author:

Liu Sha1,Li Xiang1,He Chuanni1

Affiliation:

1. Dept of Construction Management, Faculty of Infrastructure Engineering, Dalian University of Technology, China

Abstract

To improve the service quality and convenience of bus travel services, this paper proposes the Intelligent Bus Travel Service Model (IBTSM). The IBTSM makes it possible to provide a travel strategy considering every aspect of bus travel, specifically, delay in the peak period arising from limited carrying-capacities of buses. A three-step approach was executed toward implementing the IBTSM. First, the bus travel-time was predicted using Long Short-Term Memory (LSTM). Next, the crowding level in the bus was evaluated using a fuzzy expert system, based on which a reasonable start-off time was planned, and the delay caused by large passenger flow was circumvented. The k-Nearest Neighbours (k-NN) algorithm was used to provide input data of passenger flow. In this study, the correlation between passenger flow variation and bus services was investigated to extend the provisions of the travel strategy to include start-off time scheduling and target bus selection, rather than only bus running-time estimation. The proposed model was evaluated using a bus in China as a case study, and its reliability and positive impact on promoting both the quality of bus services and development of intelligent travel were demonstrated.

Publisher

Vilnius Gediminas Technical University

Subject

Mechanical Engineering,Automotive Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ensemble Methodology: Innovations in Credit Default Prediction Using LightGBM, XGBoost, and LocalEnsemble;2024 IEEE 4th International Conference on Electronic Technology, Communication and Information (ICETCI);2024-05-24

2. Duration and Labor Resource Optimization for Construction Projects—A Conditional-Value-at-Risk-Based Analysis;Buildings;2024-02-19

3. Multi-source heterogeneous data storage methods for omnimedia data space;International Journal of Grid and Utility Computing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3