PROCEDURAL ANIMATION TECHNOLOGY APPLICATION FOR HUMANOID GAME AGENTS

Author:

Builisova Kristina1ORCID

Affiliation:

1. Vilniaus Gedimino technikos universitetas, Vilnius, Lietuva

Abstract

This article analyzes inverse kinematics algorithms and demonstrates the application of the chosen algorithm to the Unity game engine. It has been found that Unity inverse kinematics solvers do not offer functionality necessary to apply anatomically correct animation to a humanoid agent. A few inverse kinematics algorithms were chosen for comparison, such as Cyclic Coordinate Descent, FABRIK and triangulation; due to the support of multiple end effectors and possible optimizations, FABRIK was chosen to be implemented in the “FABRIK IK” solver. After comparing the functionality of “FABRIK IK” to Unity’s “Two Bone IK” and “Chain IK” solvers, it was found that “FABRIK IK” has more built-in functionality than “Two Bone IK” and “Chain IK” in the analyzed areas. The measurement of framerate has shown that the application of either solver has not posed a significant difference in performance on Unity (the difference in performance ranges from –8.29% to 5.89%). The visual demonstration that shows the application of “FABRIK IK” demonstrates an anatomically sound and accurate walking cycle, especially compared to “Chain IK”; the accuracy of the animation is comparable to “Two Bone IK”.

Publisher

Vilnius Gediminas Technical University

Subject

Ocean Engineering

Reference13 articles.

1. Inverse procedural modeling of 3D models for virtual worlds

2. Inverse Kinematics Techniques in Computer Graphics: A Survey

3. Aristidou, A., & Lasenby, J. (2009). Inverse Kinematics: A review of existing techniques and introduction of a new fast iterative solver. http://andreasaristidou.com/publications/papers/CUEDF-INFENG,%20TR-632.pdf

4. FABRIK: A fast, iterative solver for the Inverse Kinematics problem

5. Oscillator driven central pattern generator (CPG) system for procedural animation of quadruped locomotion

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3