An Analysis of Choosing Gravity Anomalies for Solving Problems in Geodesy, Geophysics and Environmental Engineering
Author:
Puškorius Vytautas1, Paršeliūnas Eimuntas12, Petroškevičius Petras12, Obuchovski Romuald12
Affiliation:
1. Department of Geodesy and Cadastre, Environmental Engineering, Vilnius Gediminas Technical University, Vilnius, Lithuania 2. Institute of Geodesy, Environmental Engineering,Vilnius Gediminas Technical University, Vilnius, Lithuania
Abstract
Gravity anomalies provide valuable information about the Earth‘s gravity field. They are used for solving
various geophysical and geodetic tasks, mineral and oil exploration, geoid and quasi-geoid determination, geodynamic
processes of Earth, determination of the orbits of various objects, moving in space around the Earth etc. The increasing
accuracy of solving the above mentioned problems poses new requirements for the accuracy of the gravity anomalies.
Increasing the accuracy of gravity anomalies can be achieved by gaining the accuracy of the gravimetric and geodetic
measurements, and by improving the methodology of the anomalies detection. The modern gravimetric devices allow
to measure the gravity with an accuracy of several microgals. Space geodetic systems allow to define the geodetic
coordinates and ellipsoidal heights of gravimetric points within a centimeter accuracy. This opens up the new
opportunities to calculate in practice both hybrid and pure gravity anomalies and to improve their accuracy. In this
context, it is important to analyse the possibilities of detecting various gravity anomalies and to improve the
methodology for detecting gravity anomalies. Also it is important the correct selection of the gravity anomalies for
different geodetic, geophysical and environmental engineering tasks. The modern gravity field data of the territory of
Lithuania are used for the research.
Reference11 articles.
1. Birvydienė, R. (2014). Sunkio lauko nevienalytiškumo tyrimu metodikos tobulinimas (Daktaro disertacija). Technika, 160 p. https://doi.org/10.20334/2288-M 2. Bychkov, S. G., Dolgal, A. S., & Simanov, A. A. (2015). Vychisleniye anomaliy sily tyazhesti pri vysokotochnykh gravimetricheskikh syemkakh. Perm', UrO RAN. 142. 3. Hinze, W. J., Aiken, C., Brozena, J., Coakley, B., Dater, D., Flanagan, G., Forsberg, R., Hildenbrand, T. G., Keller, R., Kellogg, J., Kucks, R., Li, X., Mainville, A., Morin, R., Pilkington, M., Plouff, D., Ravat, D., Roman, D., Urrutia-Fucugauchi, J., Veronneau, M., Webring, M., & Winester, D. (1984). New standards for reducing gravity data: The North American gravity database 2005. Geophysics, 70(4), J25-J32. https://doi.org/10.1190/1.1988183 4. Hofmann-Wellenhof, B., & Moritz, H. (2006). Physical geodesy. Springer Wien New York, 403. 5. LaFehr, T. R. (1991). An exact solution for the gravity curvature (Bullard B) correction. Geophysics, 56(8), 1179-1184. https://doi.org/10.1190/1.1443138
|
|