Investigation of acoustic agglomeration efficiency using different working conditions of acoustic chamber

Author:

KILIKEVIČIENĖ Kristina1ORCID,CHLEBNIKOVAS Aleksandras1ORCID

Affiliation:

1. Research Institute of Mechanical Science, Faculty of Mechanics, Vilnius Gediminas Technical University, J. Basanavičiaus g. 28, Vilnius, Lithuania

Abstract

Particulate matter pollution is one of the main factors of atmospheric pollution. Due to its negative impact on both human health and the environment, it has become an actual problem in Lithuania and around the world. This paper will present a method for reducing the concentration of ultrafine particulate matter present in the atmosphere and causing pollution using different parameters of the acoustic chamber. Fine particles with an aerodynamic diameter of less than 2.5 μm are usually more saturated with toxic heavy metals and other pollutants due to their large surface area and strong surface activity. These particles go deep into the lungs and can cause lung cancer and other heart and lung diseases. Acoustic agglomeration is one of the most promising pretreatment technologies. Before using traditional particulate removal technologies, the ultrafine particles in the exhaust gas are exposed to a high-intensity sound wave, which promotes the relative motion of the aerosol particles and increases their agglomeration rate. Given results approved the high effect of reducing the amount of ultrafine particulate matter by agglomeration, thus, the reducing of the finest 0.3 μm particles is equal to more than half time at frequency of 34.75 kHz, 0.5 μm – more than half and more than three times at both frequencies of 20.06 kHz and 34.75 kHz respectively.

Publisher

VILNIUS TECH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3