EFFECTS OF URBAN GREEN BELTS ON THE AIR TEMPERATURE, HUMIDITY AND AIR QUALITY

Author:

ZHU Chunyang1,JI Peng2,LI Shuhua3

Affiliation:

1. Huazhong Agricultural University

2. Heilongjiang Bayi Agricultural University

3. Tsinghua University

Abstract

As urbanization increases, designing green space that offers ecological benefits is an increasingly important goal of urban planning. As a linear green space in an urban environment, green belts lower air temperature, increase relative humidity, and improve air quality. To quantify the ecological effects of urban green belts and to identify a critical width for effective urban green belts, we analysed the width of urban green belts in terms of their effects on air temperature (T), relative humidity (RH), concentration of negative air ions (NAI) and bacteria rate (BR). The air T, RH and NAI from 8:00 to 18:00 and BR at 9:00 over seven days were investigated on six widths of green belts (0–10 m, 10–20 m, 20–30 m, 30–40 m, 40–50 m and over 50 m) along the west Fourth Ring Road of Beijing in April, July, October and December 2009. We found that (1) the T-RH benefits increased with the width of the green belts, and the 6 m belt had the smallest effect on T-RH, followed by the 16 m and 27 m belts, whereas the effect was obvious with the 34 m belt and conspicuous and stable with the 42 m belt (approximately 80% green coverage) (P < 0.05); (2) the critical width reference value of urban green belts for an obvious effect on the increase in NAI concentration was approximately 42 m (approximately 80% green coverage) (P < 0.05) and the NAI concentration increased with the width of green belts even in July; and (3) the positive effect on the decrease in the BR was greater than the negative effect, the BR decreased with the green belt width and the changes in the brs were stable with the 34 m belt. The results of this study may help urban planners and designers achieve urban green space designs that optimize ecological effects and cultural benefits.

Funder

National Natural Science Foundation of China

Publisher

Vilnius Gediminas Technical University

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3