INVESTIGATING THE IMPACT OF PAN SHARPENING ON THE ACCURACY OF LAND COVER MAPPING IN LANDSAT OLI IMAGERY

Author:

Rokni Komeil1ORCID

Affiliation:

1. Department of Geomatic Engineering, Faculty of Engineering, Gonbad Kavous University, Golestan, Iran

Abstract

Pan Sharpening is normally applied to sharpen a multispectral image with low resolution by using a panchromatic image with a higher resolution, to generate a high resolution multispectral image. The present study aims at assessing the power of Pan Sharpening on improvement of the accuracy of image classification and land cover mapping in Landsat 8 OLI imagery. In this respect, different Pan Sharpening algorithms including Brovey, Gram-Schmidt, NNDiffuse, and Principal Components were applied to merge the Landsat OLI panchromatic band (15 m) with the Landsat OLI multispectral: visible and infrared bands (30 m), to generate a new multispectral image with a higher spatial resolution (15 m). Subsequently, the support vector machine approach was utilized to classify the original Landsat and resulting Pan Sharpened images to generate land cover maps of the study area. The outcomes were then compared through the generation of confusion matrix and calculation of kappa coefficient and overall accuracy. The results indicated superiority of NNDiffuse algorithm in Pan Sharpening and improvement of classification accuracy in Landsat OLI imagery, with an overall accuracy and kappa coefficient of about 98.66% and 0.98, respectively. Furthermore, the result showed that the Gram-Schmidt and Principal Components algorithms also slightly improved the accuracy of image classification compared to original Landsat image. The study concluded that image Pan Sharpening is useful to improve the accuracy of image classification in Landsat OLI imagery, depending on the Pan Sharpening algorithm used for this purpose.

Publisher

Vilnius Gediminas Technical University

Subject

General Earth and Planetary Sciences

Reference48 articles.

1. Comparison of multisource image fusion methods and land cover classification

2. Complementary nature of SAR and optical data: A case study in the tropics;Aschbacher, J.;Earth Observation Quarterly,1990

3. A demonstration of stereophotogrammetry with combined SIR-B and Landsat TM images

4. The use of intensity-hue saturation transformations for merging SPOT panchromatic and multispectral image data;Carper, W. J.;Photogrammetric Engineering & Remote Sensing,1990

5. Comparison of three different methods to merge multiresolution and multispectral data- Landsat TM and SPOT panchromatic;Chavez, P. S.;Photogrammetric Engineering & Remote Sensing,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3