GOOGLE EARTH ENGINE FOR LANDSAT IMAGE PROCESSING AND ASSESSING LULC CLASSIFICATION IN SOUTHWESTERN CÔTE D’IVOIRE

Author:

Kouassi Christian Jonathan Anoma1ORCID,Qian Chen1,Khan Dilawar1,Achille Lutumba Suika1,Kebin Zhang1,Omifolaji James Kehinde2,Yang Xiaohui3

Affiliation:

1. School of Soil and Water Conservation, Beijing Forestry University, Beijing, China

2. School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China; Department of Forestry and Wildlife Management, Federal University Dutse, Jigawa State, Nigeria

3. Institute of Desertification Studies, Chinese Academy of Forestry, P. O. Box 35, Yiheyuanhou, Haidian District, 100091 Beijing, China

Abstract

High-accuracy land use and land cover maps (LULC) are increasingly in demand for environmental management and decision-making. Despite the limitation, Machine learning classifiers (MLC) fill the gap in any complex issue related to LULC data accuracy. Visualizing land-cover information is critical in mitigating Côte d’Ivoire’s deforestation and land use planning using the Google Earth Engine (GEE) software. This paper estimates the probability of RF classification in South Western Côte d’Ivoire. Landsat 8 Surface Reflectance Tiers 1 (L8OLI/TIRS) data with a resolution of 30 mn for 2020 were used to classify the western and southwestern Forest areas of Côte d’Ivoire. The Random Forest (RF) learning classifier was calibrated using 80% training data and 20% testing data to assess GEE classification accuracy performance. The findings indicate that the Forest land class accounts for 39.48% of the entire study area, followed by the Bareland class, the Cultivated land class 21.28±0.90%, the Water class 1.94±0.27%, and the 0.96±0.60% Urban class respectively. The classification reliability test results show that 99.85%±1.95 is the overall training accuracy (OTA), and 99.81±1.95% for the training kappa (TK). The overall validation accuracy (VOA) is 94.02±1.90%, while 92.25±1.88% validation kappa (VK) and 92.45±1.88% RF Accuracy. The different coefficients classification accuracy results obtained from the RF confusion matrix indicate that each class has three good performances. This is due to the cultivated land samples lower spatial resolution and smaller sample numbers, resulting in a lower PA for this class than for the other classes. All had producer accuracy (PA) and user accuracy (UA) more than 90% using the L8OLI/TIRS data. Using the RF-based classification method integrated into the GEE provides an efficient and high scores accuracy for classifying land use and land cover in the study area.

Publisher

Vilnius Gediminas Technical University

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3